3.5.11 \(\int \frac {(a+b \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [411]

Optimal. Leaf size=236 \[ \frac {2 \left (3 a^3 A+15 a A b^2+15 a^2 b B-5 b^3 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}-\frac {2 b^2 (a A-5 b B) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/5*a*A*(a+b*sec(d*x+c))^2*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/15*a^2*(9*A*b+5*B*a)*sin(d*x+c)/d/sec(d*x+c)^(1/2)-
2/5*b^2*(A*a-5*B*b)*sin(d*x+c)*sec(d*x+c)^(1/2)/d+2/5*(3*A*a^3+15*A*a*b^2+15*B*a^2*b-5*B*b^3)*(cos(1/2*d*x+1/2
*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/3*
(3*A*a^2*b+3*A*b^3+B*a^3+9*B*a*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*
c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.30, antiderivative size = 236, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {4110, 4159, 4132, 3856, 2720, 4131, 2719} \begin {gather*} \frac {2 a^2 (5 a B+9 A b) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 \left (a^3 B+3 a^2 A b+9 a b^2 B+3 A b^3\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 \left (3 a^3 A+15 a^2 b B+15 a A b^2-5 b^3 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}-\frac {2 b^2 (a A-5 b B) \sin (c+d x) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a A \sin (c+d x) (a+b \sec (c+d x))^2}{5 d \sec ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(2*(3*a^3*A + 15*a*A*b^2 + 15*a^2*b*B - 5*b^3*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x
]])/(5*d) + (2*(3*a^2*A*b + 3*A*b^3 + a^3*B + 9*a*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec
[c + d*x]])/(3*d) + (2*a^2*(9*A*b + 5*a*B)*Sin[c + d*x])/(15*d*Sqrt[Sec[c + d*x]]) - (2*b^2*(a*A - 5*b*B)*Sqrt
[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a*A*(a + b*Sec[c + d*x])^2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4110

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
+ Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) + (
2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4159

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x]
 + Dist[1/(d*n), Int[(d*Csc[e + f*x])^(n + 1)*Simp[n*(B*a + A*b) + (n*(a*C + B*b) + A*a*(n + 1))*Csc[e + f*x]
+ b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x))^3 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx &=\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2}{5} \int \frac {(a+b \sec (c+d x)) \left (-\frac {1}{2} a (9 A b+5 a B)-\frac {1}{2} \left (3 a^2 A+5 A b^2+10 a b B\right ) \sec (c+d x)+\frac {1}{2} b (a A-5 b B) \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4}{15} \int \frac {\frac {3}{4} a \left (3 a^2 A+14 A b^2+15 a b B\right )+\frac {5}{4} \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \sec (c+d x)-\frac {3}{4} b^2 (a A-5 b B) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4}{15} \int \frac {\frac {3}{4} a \left (3 a^2 A+14 A b^2+15 a b B\right )-\frac {3}{4} b^2 (a A-5 b B) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=\frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}-\frac {2 b^2 (a A-5 b B) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} \left (3 a^3 A+15 a A b^2+15 a^2 b B-5 b^3 B\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (\left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}-\frac {2 b^2 (a A-5 b B) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} \left (\left (3 a^3 A+15 a A b^2+15 a^2 b B-5 b^3 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 \left (3 a^3 A+15 a A b^2+15 a^2 b B-5 b^3 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}-\frac {2 b^2 (a A-5 b B) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a A (a+b \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.54, size = 172, normalized size = 0.73 \begin {gather*} \frac {\sqrt {\sec (c+d x)} \left (12 \left (3 a^3 A+15 a A b^2+15 a^2 b B-5 b^3 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 \left (10 a^2 (3 A b+a B) \cos (c+d x)+3 \left (a^3 A+10 b^3 B+a^3 A \cos (2 (c+d x))\right )\right ) \sin (c+d x)\right )}{30 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(12*(3*a^3*A + 15*a*A*b^2 + 15*a^2*b*B - 5*b^3*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2
, 2] + 20*(3*a^2*A*b + 3*A*b^3 + a^3*B + 9*a*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + 2*(10*a^2*(
3*A*b + a*B)*Cos[c + d*x] + 3*(a^3*A + 10*b^3*B + a^3*A*Cos[2*(c + d*x)]))*Sin[c + d*x]))/(30*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(640\) vs. \(2(264)=528\).
time = 2.20, size = 641, normalized size = 2.72

method result size
default \(\frac {\frac {16 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}}{5}-\frac {16 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}}{5}-8 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b -\frac {8 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}}{3}+\frac {4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}}{5}+4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b -2 A \,a^{2} b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 A \,b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+\frac {6 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{3}}{5}+6 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \,b^{2}+\frac {4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}}{3}+4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}-\frac {2 a^{3} B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3}-6 B a \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -2 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(641\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/15*(24*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*a^3-24*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^3-60*A*c
os(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^2*b-20*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^3+6*A*cos(1/2*d*x+
1/2*c)*sin(1/2*d*x+1/2*c)^2*a^3+30*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a^2*b-15*A*a^2*b*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*A*b^3*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*A*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3+45*A*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2+10*B*cos(1/2*d*x+1/2*c)*sin(
1/2*d*x+1/2*c)^2*a^3+30*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^3-5*a^3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-45*B*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+45*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-15*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin
(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)
^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^3/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.77, size = 270, normalized size = 1.14 \begin {gather*} -\frac {5 \, \sqrt {2} {\left (i \, B a^{3} + 3 i \, A a^{2} b + 9 i \, B a b^{2} + 3 i \, A b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-i \, B a^{3} - 3 i \, A a^{2} b - 9 i \, B a b^{2} - 3 i \, A b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, \sqrt {2} {\left (-3 i \, A a^{3} - 15 i \, B a^{2} b - 15 i \, A a b^{2} + 5 i \, B b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, \sqrt {2} {\left (3 i \, A a^{3} + 15 i \, B a^{2} b + 15 i \, A a b^{2} - 5 i \, B b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (3 \, A a^{3} \cos \left (d x + c\right )^{2} + 15 \, B b^{3} + 5 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

-1/15*(5*sqrt(2)*(I*B*a^3 + 3*I*A*a^2*b + 9*I*B*a*b^2 + 3*I*A*b^3)*weierstrassPInverse(-4, 0, cos(d*x + c) + I
*sin(d*x + c)) + 5*sqrt(2)*(-I*B*a^3 - 3*I*A*a^2*b - 9*I*B*a*b^2 - 3*I*A*b^3)*weierstrassPInverse(-4, 0, cos(d
*x + c) - I*sin(d*x + c)) + 3*sqrt(2)*(-3*I*A*a^3 - 15*I*B*a^2*b - 15*I*A*a*b^2 + 5*I*B*b^3)*weierstrassZeta(-
4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*sqrt(2)*(3*I*A*a^3 + 15*I*B*a^2*b + 15*I*
A*a*b^2 - 5*I*B*b^3)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(3*
A*a^3*cos(d*x + c)^2 + 15*B*b^3 + 5*(B*a^3 + 3*A*a^2*b)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{3}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**3*(A+B*sec(d*x+c))/sec(d*x+c)**(5/2),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))**3/sec(c + d*x)**(5/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^3/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^3}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^3)/(1/cos(c + d*x))^(5/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^3)/(1/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________